If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2-10X-161=0
a = 1; b = -10; c = -161;
Δ = b2-4ac
Δ = -102-4·1·(-161)
Δ = 744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{744}=\sqrt{4*186}=\sqrt{4}*\sqrt{186}=2\sqrt{186}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{186}}{2*1}=\frac{10-2\sqrt{186}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{186}}{2*1}=\frac{10+2\sqrt{186}}{2} $
| -21/25=6/5v | | 50x-6+60=16 | | 1=2j-9 | | 2n=-2/3 | | 6a=-5(6a)-5 | | -264+4x=66-6x | | 33/16=3/4x | | 7x-7=6x-7 | | 33/16=1/4x | | -1/6=-1/2b | | 2.2x+1.2=7.8 | | 10x-1-9x=13 | | x-1=(3) | | -x-3=-4x-5 | | x+1=(4) | | 55000-900t=41000-550t | | 28=-3n | | x+2=(30) | | r+4=-r | | -9/8-7/6x=5/4 | | 8x-5x+3=4x+2-24 | | 510x+40=397 | | 3x+5=30+4x | | 4x-8+5x+3+6x-1=174 | | -7(x-7)-7=42 | | 124=2x^2+29x | | 3x+1/5=5/2 | | 12-9+10r=7r-9-2r+27 | | Y=x÷3 | | 3x+5+30+4x=180 | | 3(-2)-6y=24 | | 3x+5=4x-30=180 |